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Abstract-The problem of the steady vibrations in a linear theory of homogeneous and isotropic
thermoelastic solids with voids is considered. First, integral relations of Betti type are established.
The singular solutions corresponding to concentrated sources are used to derive representations of
Somigliana type. Then, radiation conditions are introduced and a uniqueness result for the exterior
problem is established. The potentials of single layer and double layer are used to reduce the
boundary value problems to singular integral equations for which Fredholm's theorems hold.

I. INTRODUCTION

The theory of elastic materials with voids is one of the simple extensions of the classical
theory of elasticity for the treatment of porous solids in which the matrix material is elastic
and the interstices are void of material. The theory of elastic materials with voids seems to
be an adequate tool to describe the behaviour of granular materials like rock, soils and
manufactured porous bodies. The non-linear theory ofelastic materials with voids has been
established by Nunziato and Cowin (1979). In this theory the bulk density is written as the
product of two fields, the matrix material density field and the volume fraction field. This
representation introduces an additional degree of kinematic freedom. The linear theory of
elastic materials with voids has been established by Cowin and Nunziato (1983). An
extension of this theory to thermoelastic bodies was proposed by lesan (1986). The theory
of thermoelastic materials with voids has been studied in various papers (see e.g. lesan,
1987; Ciarletta and Scarpetta, 1989; Chandrasekharaiah and Cowin, 1989; Ciarletta and
Scalia, 1990; Ciarletta, 1991 ; Ciarletta and Scalia, 1993). In this paper we study the problem
of steady vibrations in the theory of thermoelastic materials with voids by using the
method of potentials developed by Kupradze (1965) and Kupradze et al. (1979). The wave
propagation in the isothermal theory of elastic materials with voids has been studied in
various papers (see e.g. Cowin and Nunziato, 1983; Nunziato and Walsh, 1977; Puri and
Cowin, 1985; Chandrasekharaiah, 1987).

In Section 2 we present the basic equations of the dynamic theory of thermoelastic
materials with voids governing the steady vibrations. Within the framework of the linear
theory of thermoelastic materials with voids, Ciarletta (1991), by extending a result of
classical thermoelasticity obtained by Nowacki (1964), has established a solution of
Galerkin type and derived the solutions for steady vibrations corresponding to a con­
centrated heat source and a concentrated extrinsic body force. In Section 3 we use the
solution of Galerkin type to obtain the singular solutions of the field equations cor­
responding to concentrated classical body forces and introduce the matrix of fundamental
solutions in the case of steady vibrations. In Section 4 we derive some useful integral
identities of Betti type. Section 5 is devoted to a representation of the regular solutions. In
Section 6 we present the radiation conditions and establish a uniqueness theorem for the
exterior problem. The fundamental solutions are used in Section 7 to derive representations
of Somigliana type and to introduce potentials of single and double layers. The boundary
value problems are reduced to singular integral equations for which Fredholm's basic
theorems are valid.
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2. PRELIMINARIES AND BASIC EQUATIONS

Throughout this paper we employ a rectangular Cartesian system OXi (i = 1,2,3). We
shall employ the usual summation and differentiation conventions: Latin subscripts (unless
otherwise specified) are understood to range over the integers (1,2,3), summation over
repeated subscripts is implied and subscripts preceded by a comma denote partial differ­
entiation with respect to the corresponding Cartesian coordinate.

Let Ui denote the components of the displacement vector field. Then the components
of the infinitesimal strain field are given by

(1)

We consider thermoelastic materials with voids which possess a reference configuration
in which the volume fraction and the absolute temperature To (>0) are constants. We
denote by q> the change in volume fraction from the reference volume fraction and by 8 the
temperature measured from the absolute temperature To. The constitutive equations for
homogeneous and isotropic thermoelastic bodies are (lesan, 1987)

(2)

Here tij are the components of the stress tensor, hi are the components of the equilibrated
stress vector, 9 is the intrinsic equilibrated body force, 1] is the specific entropy, qi are the
components of the heat flux vector, p is the density in the reference configuration, 1, p., p,
h, ex, ~, m, a and k are constitutive constants, and (,ij is Kronecker's delta.

The equations of motion can be written in the form

(3)

The energy equation is given by

(4)

In eqns (3) and (4) we have used the following notations: j; are the components of the
body force vector, I is the extrinsic equilibrated body force, s is the extrinsic heat supply
and IC is the equilibrated inertia. The surface traction t, the equilibrated stress h and the
heat flux q acting at a point X(Xk) on the surface L are given by

(5)

where nj = cos (no xj ) and nx is the unit vector of the outward normal to L at x. From eqns
(1), (2), (3) and (4) we obtain the field equations in terms of the displacement, volume
fraction and temperature

P.tlUi+(),,+P)UMi+Pq>,i-b8.i+Pj; = PUi'

extlcp-(q>-{Juu+m8+pl = plCci>, ktl9-hToui,i-aTo8-mTot/> = -ps, (6)

where tl is the Laplacian.
In what follows we study the problem of steady vibrations. We assume that

Jj = Re [Jj'(x) exp (-irot)],

s = Re [s'(x) exp (-irot)],

cp = Re [q>'(x; w) exp (-iwt)],

1= Re [l'(x) exp (-irot)],

uj = Re [u;(x;w) exp (-irot)],

8 = Re [8'(x; w) exp (-iwt)],
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where i = Fl, Re [11 denotes the real part off and w is a prescribed frequency. Clearly,
we can write

where

ers = Re [e;"(x;ro) exp (-iwt)],

hj ::;::; Re [h;(x; ro) exp (-iwt)],

fJ = Re [fJ'(x; ro) exp (-iwt)],

t rs = Re [t;,(x; ro) exp ( - iwt)],

9 = Re [g'(x; w) exp (-iwt)],

qj = Re [q;(x; ro) exp (-iwt)],

and

, I(' + ')eij = 2" Ui,j uj,i,

t;j = Ae;,Dij +2j.le;j+{3qlDij -b9'oij, h; = rx<P:i,

g';;:;; -{3e;,-~<p'+m9', pr( = be;,+a9'+m<p', q; = k9:i . (7)

We assume that 2+2fl, fl, p, rx and K are positive. We introduce the notations

, fl
fl =-,

p

p
y=-,

a

2';;:;;~, {3'=~' b'=~, Fi=-j;, ~'=-~,
P P P IX

,m pi K , To
m = -;' L = - -;' X = -e'+fJw

2
, 11 = p~, To =PT'

Ps= - -s,
k

, a
a =-,

P

am' m
C=-=-,

p P
(8)

From eqn (6) we obtain the basic set of differential equations of steady vibrations. In what
follows, for convenience, we suppress the primes so that the equations take the form

flAU, + (A+/J.)Uj,jr+{3<p,r-b9.r+ro2ur = F"

A<p-yu",+xcp+m9 =L, A9 + iroTo bUr., +iwToc<p + iroToa9 = S. (9)

The system (9) can be written in the matrix form. As in Kupradze (1965) the vector
v = (VI' V2, ••• , vm) shall be considered as the column matrix

t'=

Thus, the product of the matrix A = Ilaijllm"m and the vector v = (VI> V2,'''' vm) is an m­
dimensional vector. The vector V multiplied by the matrix A will denote the matrix product
between the row matrix IlvI,v2, ... ,vm ll and the matrix A. We introduce the matricial
differential operator

(10)

where
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a
Ars = -b--;-,

uXr

a
A4r = -Y--;-,

uXr

If we denote

a
Asr = iwbTo--;-, A S4 = iwToc, Ass = A+iwToa.

uXr

U = (UI, U2' U3, qJ, 8), F = (F1, F2 , F3 , L, S)

(11 )

(12)

then we can write the equation (9) in the form

Clearly, we may write

where

(13)

Since A+2jl > 0 it follows from eqn (15) that the system (9) is elliptic.
Let Abe the adjoint operator of the operator A. Clearly,

where A* is the transposed matrix of A.
The adjoint system is

(14)

(15)

(16)
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The system (16) may be written in the form

/l~Vr+(A.+/l)Vj,jr+yv4,r-iwTovs,r+O?Vr = <Pn
AV4-{Jvr,r+X,v4+iwTocvs = <P4'

Avs +bVr,r+ mV4+iwToavs = <Ps.

2823

(17)

3. FUNDAMENTAL SOLUTIONS

In this section we present the basic solutions corresponding to a concentrated body
force, a concentrated extrinsic equilibrated body force and a concentrated heat source in
the case of steady vibrations. To this end we shall use the results established by Ciarletta
(1991).

If we introduce the notations

01 = (A.+2/l)A+w2, 02 = /l~+W2,

03 = ~+x, 04 = ~+iwToa

then, eqns (9) become

02Ur+(A.+/l)Uj,jr+{JIp,r-b9,r = F"

031p-yur,r+m9 = L, 049+iwTobur,r+iwToclp = S,

Let us introduce the notation

(18)

(19)

By using a representation of Galerkin type, Ciarletta (1991) has established the solutions
corresponding to a concentrated heat source and a concentrated extrinsic body force acting
in a body occupying the entire space. We have used the same representation and have
derived the solutions corresponding to concentrated classical body forces. Thus, if we
assume that F; = J(x- y)J;j' L ::;: 0, S::;: 0, where J is the Dirac delta and} is fixed, then we
find that

U~) = JkjYE- {(A. + /l)03 04 +{Jy04 +iwTo[mb{J+bcy+b203 -me(A.+ /l)]}E,kj'

IpW = (iwTomb+y04)02E,j, 9{J) = -iwTo(ey+bD3)02 E,j, (j = 1,2,3), (20)

where E is given by

I 4

E(x;y) = - 4 (A. 2) L aj exp (iO'jr).
n/l + /l r j= I

Here r = Ix- yl and O'j are the roots with positive real parts of the following equation

(21)

(A. +2/l)0'6 + [(iwToa+ X)(A.+ 2/l) +w2+y{J+ iwTob2]0'4

+ {iwTo[(A.+ 2/l)(ax -me) +w2a+ay{J +b2X+b(ey+ {Jm)] +W2X}0'2

+iw3To(ax-me) = 0, (22)

and 0'4 = w/.,jP.. Moreover,

SAS31:tO-F
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4

a;! = n (er:-erj), (s = 1,2,3,4).
j= Ifj';'s)

(23)

In the case of the loadings Fj = 0, L = c5(x-y) and S = °we obtain that the solution
is (Ciarletta, 1991)

U)4) = -(iwTocb+{304)P.j ,

m(4) = (t'",'T'ob2 A+ 01 04)P, 0(4) . 'T' (b{3A O)P't' v.J ~ , U 1:1' = lW ~ 0 u - C 1 ,

where P is given by

bl l = (eri-aD(eri-a~), b:;1 = (er~-aD(a~-erD,

b:;1 = (a~ -erD(a~ -aD.

(24)

(25)

Finally, the solution corresponding to F; = 0, L = °and S = o(x-y) is (Ciarletta, 1991)

The functions uj'), cp(S), 8(s) (s = 1,2, ... ,5) given by eqns (20), (24) and (26) represent the
fundamental solutions in the case of steady vibrations.

Let f(x, y ;w) be the matrix of fundamental solutions of the system (9)

where

f(x,y;w) = Ilfrs(x,y;w)llsx5'

fjk(x,y;w) = ujk), f 4k (X,y;w) = cp(k)(X,y),

f Sk(X,y; w) = 9(kl(x,y), k = 1,2, ... ,5.

(27)

If x#- y each column f(s) (s = 1,2, ... ,5) of the matrix f(x,y; w) satisfies at x the homo­
geneous system (9). Thus,

(28)

Let f(x,y; w) be the matrix of fundamental solutions of the system (17),

It is easy to prove that

f*(y,x;w) = f(x,y;w).

(29)

(30)

4. RECIPROCITY RELATIONS

Let D+ be a finite region bounded by the closed Liapunov surface fF, and D- the
complementary of D+ u fF to infinite space. In what follows letters in boldface stand for
three-dimensional vectors. We say that U = (UI' U2, U3, U4' us) = (u, U4' us) is regular in D+
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if Us E C1(.6+) fl C2(D+) and us,rm (s = 1,2, ... , 5) are integrable on D+. Let 1:(x; 0) be the
sphere with the centre in x and radius O. We say that U = (0, U4, us) is regular in D- if
UsE C(D-) fl C2(D) and Us,rm (s = 1,2, ... ,5) are integrable on D- fl 1:(0,0) for any O.

Let AI(%x, (0) be the row matrix with the elements Ali%x, (0) (i,j = 1,2, ... ,5) given
by eqn (11). If we introduce the notations

LrU=Ar(o~:£O)U, (r=I,2, ... ,5),

then the system (9) can be written in the form

(31)

Let AI(o/fJx, (0) be the row-matrix with the elements AIj(ojox, (0) (i,j = 1,2, ... ,5). If
we denote

_ _ ( 0 )
Lr V = Ar ox

r
' £0 V, (r = 1,2, ... ,5),

where V = (v, V4' vs), then the system (17) becomes

(32)

Let U = (u, U4' us) and V = (v, V4, vs) be regular vectors in D+ which satisfy eqns (13)
and (16), respectively. We introduce the notations

Tjj = ),Ur,rOIj+J.t(UI,j +Uj,;) +pu40ij-buSOlj, HI = U4,1,

G = XU4 -yur,r+muS' QI = uS,I, M = i£OTo(bur,r+cu4 +aus),

fij = ),vr,rOlj+J.t(vl,j+Vj,;)+yv40ij-i£OTobvsoij, 0 1= V4,1,

G= XV4 -Pvr,r+i£OTocvs, QI = VS,j, M = bVr,r+mv4 +i£OToavs, (33)

Then, eqns (31) and (32) may be written in the forms

and

(34)

respectively. It follows from eqns (31) and (34) that

Q-.+M= A..s',I 'Y , (35)

Applying the divergence theorem, we are led to
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(37)

In a similar manner we find that

Thus, from eqns (36) and (38) we conclude that

L+ [UX(:x'w) V- VA (:x'w) UJdV = L[UR(:x,nx ) V- VR (:x,nx ) UJda,

(39)

where

Rij (:x' nx ) = JlO;j :n + An; O~j + Jlnj o~; , R;4 = pn;, R;s = - bn;,

R4i = RSi = R4S = RS4 = 0, Rij (:x ,nx ) = R;j (:x,nx ) , R;4 = yni,

- - - - R . R - 0R4i = RSi = R4S = RS4 = 0, 1(;5 = -lwTobn;, R44 = Rss = 1(44 = Rss = on' (40)

Let R;(ojox, nx ) be row matrix with the elements Rij(ojox, nx ), (i,} = 1,2, ... ,5). Then,
from eqns (33) and (40) we obtain

Next, we establish other integral identities. In what follows we denote by!the complex
conjugate of f We assume that U = (u, U4' us) is a regular vector field in D+ that satisfies
the equation

Then, the vector 0- = (11, a4, as) satisfies the equations

JlAar+ (A +Jl)aj,jr+pa4.r-bas.r+w2 ar = 0,

Aa4-yar,r+Xa4 +mas = 0,

Aas-iwTobar,r -iwToca4-iwToaas = o.

(42)

(43)
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These equations can be written in the form

where

fij = ),ar,r~ij+J1.(i1;J+i1j,;)+Pi14~Ij-bi15~[j, D[ = i14,;,

G= Xi14 -yi1r,r+mi1S' Q; = i1s,;, Ai = -iwTo(bar,r +ca4+ai1s).

In the case of a homogeneous problem, in view of eqn (34), we obtain

2827

(44)

Taking into account that from eqn (8) we have yc = mp and with the help of divergence
theorem, by eqn (45), we get

In a similar manner we find that

P 2 PI]- -U4[a4;+W U[i1;+ -XU4a4+ausi1S+ ~US[i1s; dv = O.y , , Y lW~ 0 ' ,

It follows from eqns (46) and (47) that

(46)

(47)

(48)
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5. A REPRESENTATION OF SOLUTIONS

We consider the equation

(49)

Theorem 5.1.
Let U = (u, U4, us) be a regular solution of eqn (49). Then

where

curl u(l) = 0,

(50)

(~+(j~)U(2) = 0, (~+(jD(~+(j~)(~+(jDu4 = 0,

div u(2) = 0, (~+(jf)(~+(j~)(~+(jDus = O. (51)

Proof Equation (49) implies that

J.l~U+(A+J.l)grad div u+w2 u+{3 grad U4 -b grad Us = 0,

~U4 +XU4 +mus -y div u = 0,

~us +iwTocU4 +iwToaus +iwTob div u = o.

By curl curl u = grad div u-~u, the first equation from (52) becomes

(A + 2J.l) grad div u + w 2u - J.l curl curl u + {3 grad U4 - b grad Us = O.

Thus, we can write

u = U(I)+U(2),

where

A+2J.l . {3 b
u(l) = - -- grad dlV u- - grad U4 + - grad Us,

w2 w2 w2

u<2) = ..L curl curl U.
w2

Clearly,

curl u(l) = 0, div u(2) = O.

From eqn (52) we get (J.l~+W2) curl u = 0, so that

(~+ (jDU(2) = O.

Equations (52) imply that

(52)

(53)

(54)

(55)

(56)
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(L\+p2) divu+ ;':2f.lL\U4- ;':2f.lL\US = 0,

(L\+X)u4-ydivu+mus =0,

(L\+iwToa)us +iwTob div u+iwTocu4 = 0,

2829

(57)

{(L\+p2)[(L\ + X)(L\ +iwToa) -iwTomc] + ;':2f.l L\[y(L\ + iwToa) +iwTomb]

+ ;':2f.liWToL\[b(L\+X)+CY]}diVU = 0.

The above relation can be written

(L\+(if)(L\+(i~)(L\+(indiv U= 0,

where (if, (i~, (i~ are the roots of eqn (23). Similarly, we find that

and this completes the proof.

6. RADIATION CONDITIONS. A UNIQUENESS RESULT

In this section we study the regular solutions in n- ofeqn (49). We establish conditions
at infinity of Sommerfeld type and show that these conditions ensure a unique solution.

Let U = (U(I) +U(2), U4, us) be a regular solution in n- of eqn (49). We say that U
satisfies the radiation conditions if

U(l) (x) = 0(,-1),

UL(X) = 0(,-1),

U~l) = 0(,-2),

UL,j = 0(,-2), (L = 4,5)

(58)

where x = (Xl> X2' X3) and,2 = XjXj • Here,j = O(g) means thatflg is bounded, and! = o(g)
means that flg tends to zero when g increases.

We introduce the notation

(59)

It is known from Kupradze (1965) that if (58h holds then we have

(60)
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Theorem 6.1.
Let U = (0(1)+0(2), U4, us) be a regular solution in D- of eqn (49) that satisfies the

radiation conditions and one of the conditions

u = 0, U4 = 0, Us = 0, on !IF, (61)

(62)

Then U(I) = 0, U(2) = 0, U4 = 0, Us = O.
Proof We consider the sphere 1:(0; R) with sufficiently large R such that D+ c 1:(0; R).

Let 81: be the boundary of 1:(0; R) and n = D- (\ 1:(0; R). If U = (0, u4 , us) is a regular
solution in D- of eqn (49), that satisfies the radiation conditions and one of the conditions
(61), (62), then by (48) we get

= f [u)2)(T;e(u(2» +iwha)2»-a)2)(T;e(0(2» -iwhu)2»
i!:!:

Clearly, eqn (60) implies that

(64)

Thus, if we let R -+ 00 and use eqn (64), we conclude from (63) that

Therefore

(65)

In view of Theorem 5.1,

(66)

By a well known theorem [see Kupradze (1965), p. 53] from (65h and (66) we obtain
0(2) = 0. It follows from eqns (65)1 and (58h that Us = O. By using eqns (52) and (58h we
find that U4 = 0 and div U(I) = O. Moreover from div u(l) = 0, curl U(I) =°and the con­
ditions at infinity we conclude that u(l) = 0, and the proof is complete.

7. SOMIGLIANA RELATIONS. POTENTIALS

Following Kupradze (1965) and Kupradze et al. (1979), if U = (UllU2' U3' U4' us) is a
regular vector field in D+ and V = f'(k) (x, Y ; w), (k 1,2, ... , 5), y E D+, then eqn (39)
implies that
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J[ _(0 )-(k) . -(k) .) (0 )V( )JdVk(Y) = F V(x)R ox,nx r (x,y,w)-r (x,y,w R ox,nx X ax

+ L+ f(k)(X,y;W)A(:X,nx)V(X)dVx, (k= 1,2, ... ,5). (67)

Taking into account eqn (27) from (67) we obtain

Vex) = L+ r(x,y; w)A (:y' w) U(y) ] dvy

+L[A(X,y;W)V(y)-r(X,y;W)R(~,ny)V(y)Jday, XED+, (68)

where

(69)

The following result can be established as in Kupradze (1965) and Kupradze et al.
(1979).

Theorem 7.l.
Each column of the matrix A(x,y; w) satisfies at x the eqn (49), for x # y.
If V is a regular vector field in D~ that satisfies the radiation conditions, then we can

establish a representation of V analogous with eqn (68).
Following Kupradze (1965) and Kupradze et al. (1979), we introduce the potential of

a single-layer

V(x;l{!) = Lr(x,y;w)l{!(y) day,

the potential of a double-layer

and the potential of mass

U(x;p) = r r(x,y;w)p(y) dvy.
Jv+

(70)

(71)

(72)

We assume that l{! is Holder continuous on IF, 11 is Holder continuously differentiable on
IF and p is Holder continuous on D+ . As in the classical thermoelasticity (Kupradze et al.,
1979), we have

A (~,w) V(x;l{!) = 0, A (~,w) W(x;11) = 0, A (:x,w) V(x;p) = p, xED+.

(73)

Moreover, following Kupradze (1965) and Kupradze et al. (1979), we can prove the
following theorems.
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Theorem 7.2.
The potential of the single-layer is continuous throughout.

Theorem 7.3.
The potential of a double-layer has finite limits when the point x tends to z Eff both

from within and from without, and these limits are respectively equal to

W+(Z;I1) = -~I1(z)+ LA(z,Y;W)I1(Y) dap

W-(Z;I1) = h(z) +LA(z,Y;W)I1(Y) day,

the integrals being conceived in the sense of Chauchy's principal value.

(74)

Theorem 7.4.
R(818x, nx ) V(x; r/J) has finite limits as the point x tends to ZEff from within and from

without and these limits are

[R (:z,n=) V(Z;r/J)r =~r/J(z)+ L[R(:z,n=)r(z,Y;W)]r/J(Y) day,

[R(:z,n=)v(z;r/J)T = -~r/J(z)+ L[R(:z,n=)r(z,Y;W)]r/J(Y) day, (75)

respectively.
In what follows we restrict our attention to eqn (49). We consider the following

boundary problems.

Interior problems
To find a regular solution in D+ of eqn (49) satisfying one of the conditions

where G j and Gz are prescribed vector fields.

Exterior problems
To find a regular solution in D- of eqn (49) that satisfies the radiation conditions and

one of the conditions

where G3 and G4 are prescribed vector fields.
We assume that G{ and G3 are Holder continuously differentiable on ff, and G2 and

G4 are Holder continuous on ff. We denote by (I~) and (E~) the homogeneous problems
corresponding to (la) and (E,), (IX = 1,2), respectively.
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We seek the solutions of the problems (II) and (EI) in the form of the double-layer
potential and the solutions of the problems (12) and (E2) in the form of the single-layer
potential. In view of Theorems 7.3 and 7.4 we obtain for unknown densities the following
equations

-h(z)+LA(z,Y;W)l1(Y) day = GI(z),

~l/J(z)+ L[R (~,nz)r(z'Y;W)Jl/J(Y) day = G2 (z),

~l1(Z)+ LA(z,Y;W)l1(Y) day = G3(z),

-~l/J(z)+L[R (:z,nz)r(z,Y;W)]l/J(Y) day = G4(z),

z e:F. These equations are two-dimensional singular integral equations; they can only be
understood in the sense of principal values. Let us show that the Fredholm theory is
applicable. The integral operator of the problem (II) may be written in the form

Hl1 = -l1(Z)+LK(z,Y;W)l1(Y) day,

where

K(z,Y) = 2A(z,y; w).

It foHows from eqns (27) and (69) that

where

K 1(z,y) = Ilkrs(z,y)llsxs,

fJ.
krs(z,Y) = 3 [(zs - Ys) cos (ny, zr) - (zr - Yr) cos (ny, zs)] ,

21t(J" +2fJ.)r

(76)

Next, we determine the characteristic matrix of the operator H introducing a local
coordinate system «(ll (2, (3) at each point ze:F with the (3-axis directed along the outside
normal to:F at z. Let k = Ilkijllsxs be the characteristic matrix of Hand (J = II(Jijllsxs be
the symbolic matrix of the operator H. We find that

kIt = k 22 = k 33 = k 44 = k S5 = -1, kij = -kp , (i #- i),

ki4 = kiS = k4i = k Si = 0, (Jll = (J22 = (J33 = (J44 = (Jss = -1,

(Jrs = 2nikrs (r #- s), (Ji4 = (JiS = (J4i = (JSi = 0,

and
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det (J = 1

In what follows we assume that

so that the integral operator corresponding to the equation (II) is of the normal type. Since
H is of normal type and the symbolic matrix is antisymmetric, then the index of this
operator is zero (cf. Mikhlin, 1965).

Thus, we may conclude that the operator H is a Fredholm operator. In a similar way
we can prove that the operators corresponding to the remaining equations are Fredholm
operators in the space of Holder continuous functions.
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